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Abstract

Elastodynamic Green’s functions for a piezoelectric structure represent the electro-mechanical response due to a
steady-state point source as either a unit force or a unit charge. Herein, Green’s functions for a laminated circular
piezoelectric cylinder are constructed by means of the superposition of modal data from the spectral decomposition of
the operator of the equations governing its dynamic behavior. These governing equations are based on a semi-analytical
finite element formulation where the discretization occurs through the cylinder’s thickness. Examples of a homogeneous
PZT-4 cylinder and a two-layer cylinder composed of a PZT-4 material at crystal orientations of +30° with the lon-
gitudinal axis are presented. Numerical implementation details for these two circular cylinders show the convergence
and accuracy of these Green’s functions.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Free vibration analysis of a structure, or alternatively the spectral decomposition of the operator of its
governing equation, yields modal data, which can be used to characterize the structural response due to a
myriad of forced inputs. Herein, we are concerned with the construction of Green’s functions for a lami-
nated circular cylinder based on modal data established by the procedure of Siao et al. (1994). The cylinder
under consideration may be composed of any number of uniform thickness piezoelectric layers, where each
layer may have its own material properties. The availability of Green’s functions will enable methods to be
formulated for examining the wave scattering phenomena in such cylinders in the presence of flaws such as
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cracks and delaminations. It is hoped that useful ideas for structural health monitoring will emerge from
this path of investigation.

The free axisymmetric and flexural vibrations of a circular piezoelectric cylinder whose material belongs
to crystal class 6mm were first studied by Paul (1962, 1966). Numerical exploration of his frequency
equations in the long wave length regime was first attempted by Paul and Raju (1981, 1982) by means of
asymptotic analysis. Subsequently, Paul and Venkatesan (1987) provided numerical data for a wide range
of wave lengths under various combinations of opened and shorted circuit conditions on the two lateral
surfaces of a hollow cylinder. Ding et al. (1997) and Chen et al. (2004) presented analytic solutions for the
free vibration of piezoelectric cylinders filled with a compressible fluid, wherein results for a cylinder
without fluid were also given. Buchanan and Peddieson (1989, 1991) computed the natural frequencies of
propagating waves for infinitely long piezoelectric cylinders using a one-dimensional finite element model in
the radial direction. Siao et al. (1994), employing the same radial discretization procedure and a semi-
analytical finite element formulation, determined spectral data for both propagating waves and edge
vibrations in such cylinders. More recently, Hussein and Heyliger (1998) presented a free vibration analysis
of laminated piezoelectric cylindrical shells using a semi-analytical discrete-layer model. While the bulk of
the literature is concerned with free vibration analyses, some studies on forced response have appeared; see,
for example, Ding et al. (2003), who considered the transient axisymmetric plane strain response of a
hollow piezoelectric cylinder. For additional references on topics related to piezoelectric structures, see
Dokmeci (1980, 1989) whose surveys elaborate on a wide range of subjects, including many on finite ele-
ment calculations.

Siao et al. (1994) presented a method for determining the eigendata for a circular laminated piezoelectric
cylinder. Such data consist of a finite basis of propagating waves and edge vibrations, as contrasted with an
infinity of these eigenmodes had an analytical solution procedure been used. Nevertheless, such numerical
eigendata can be made as accurate as necessary by appropriate discretization of the thickness profile. Since
one-dimensional elements are used, the computational cost associated with a very fine model is modest vis-
a-vis models based on multi-dimensional interpolations. Herein, we utilize this method to establish the
eigendata for construction of an elastodynamic steady-state Green function for such a cylinder. This
construction is based on a modal representation of a singular source term. Examples of such Green’s
functions for two-dimensional laminated anisotropic plates and laminated anisotropic circular cylinders
were given by Zhu et al. (1995) and Zhuang et al. (1999), respectively. Green’s function is essential to
quantitative non-destructive evaluations of crack sizes and locations, delaminations, and other flaws in a
structure. They are used to describe the loading conditions on the flaws and they comprise the kernels in
boundary element analyses. This approach is attractive because of the relative ease in forming boundary
integral in the presence of crack-tip singularity; see, for example, Zhu et al. (1995).

In the next section, the dependent variables are summarized and a non-dimensionalization is invoked.
Then, the governing equations of motion and boundary conditions are given and two eigenproblems are
discussed. Next, a steady-state solution for a time harmonic forced input is given by means of a Fourier
transform. Based on this solution, an elastodynamic Green’s function for the laminated piezoelectric cyl-
inder can be constructed. Examples of Green’s functions are given for a homogeneous PZT-4 cylinder and
for a two-layer cylinder of same material but with their crystallographic axes oriented at +30° with the
generator.

2. Preliminaries
Consider an infinitely long laminated piezoelectric circular cylinder as shown in Fig. 1 where cylindrical

coordinates (r,0,z) have been adopted. The primary dependent variables in this problem are: mechanical
displacement u = [u,, ug, u.]"; stress T = [Ty, Tog, Tie T, Tz, Tr) s strain S = [S,,., Sgo, Swo, Soz, S, Sy 5 electric
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Typical laminate A finite lement lamina

Fig. 1. Laminated piezoelectric cylinder.

displacement D = [D,.,Dg,DZ]T; and electric field E = [E,,Eg,EZ]T, where E = —V ¢ with ¢ as the electric
potential. It is convenient to concatenate the mechanical and electrical dependent variables into arrays.

I Rt 2

For a given cylindrical lamina, the piezoelectric constitutive relation in terms of the concatenated
variables is given by

c —ef

Q=Cq where C = ( ) (2)
e ¢

with ¢, e and ¢ as the matrices of the elastic anisotropic moduli (6 x 6), piezoelectric constants (3 x 6) and

dielectric constants (3 x 3), respectively. Also, there are nine generalized deformational relations, q = Ly,

where operator L contains the linear cylindrical coordinates differential operators relating the strain and

electric field to the mechanical displacement and potential.

Dimensionless variables are used herein to preclude numerical anomalies due to large differences in the
units between the various material properties. In setting forth this non-dimensionalization, regard all
quantities on the right-hand and left-hand sides, respectively, of each defining equation to be the dimen-
sional and their corresponding dimensionless form. Four key properties are selected as the reference values,
viz., (1) total cylinder thickness #, (2) an elastic modulus, ¢°, (3) a piezoelectric constant ¢°, and (4) mass
density p° where ¢, ¢ and p° are of a particular laminate in the cylinder’s radial profile. The geometry and
mechanical displacements, the material constants and mass densities are normalized as

r V4 U;

r:Z7 Z:Z; ui:Z7 (i:r707z) (3)
Cc &ij e; Pi ..
pq:£7 81:/':8_57 eip:e_ga pi:F7 (Pa(]:172737~--76); (17]:17273) (4)

where ¢ is the reference dielectric constant given by & = (¢°)*/c°. Introduce E° and #° as

0 0
0o_¢ o_ [P
E_E’ t—\/gh (5)

With these parameters, time ¢ and electric potential ¢ take the non-dimensional forms

t:t% and d):Ei‘jh ()

All of the other variables are rendered dimensionless by
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T, Dy Ey

=7 =5 (p=12...,6);  Di=—, Ei=q1y, (k=1273) (7)
Lastly, the normalized charge p, and body force density component f; are given by
hp, hfi .
Pe="p0 Ji= a0 (i=r0,z) (8)

This non-dimensionalization scheme yields all dimensionless equations in the same form as their dimen-
sional counterparts.

3. Governing equation and boundary conditions

The equations of motion in Siao et al. (1994) are based on a semi-analytical finite element formulation,
where the discretization of the laminated cylinder takes the form of a series of three-node cylindrical
laminas, each capable of having its own piezoelectric properties and thickness. In each three-node element,
a quadratic interpolation field is used radially but the axial, circumferential and time dependencies are left
undetermined at the outset. Hamilton’s principle with Tiersten’s (1969) electric enthalpy as the energy
functional was used to derive the following matrix equations of motion.

KV + KV, +K3V,, —K4V 0 —K5V . =KV ,, +MV = F 9)

where V is an ordered set of nodal variables for all of the nodes in the finite element model of the cylinder.
The stiffness and consistent mass matrices, K,’s and, M can be found in Siao et al. (1994), where K, K4, K;
and K¢ are symmetric, while K, and K; are antisymmetric. The consistent load F is obtained by integrating
the product of the radial interpolation functions N and the mechanical loads and electric charge over the
radial profile of the cylinder.

F:/rNT{_fpe]rdr (10)

where f contains the components of the mechanical load and p, is the charge density.
Homogeneous boundary conditions on the lateral surfaces and end cross-section can be stated as fol-
lows. For a hollow cylinder with inside and outside radii, r;, and 7, traction-free surfaces require that

Trr:TrOZTZrZO (11)

The electrical condition may take the form of an opened circuit (surface is uncoated) where the radial
electric displacement component D, must vanish or a shorted-circuited condition (a coated lateral surface
that is grounded) where the potential ¢ (or voltage) vanishes

D.=0 or ¢=0 (12)

4. Free vibration analyses

For free vibrations, the solution form is
V =V, exp{i(knz + m — wt)} (13)
where o is the circular frequency, (k,,m) are the axial and circumferential wave numbers, and V,, is the

array of nodal coordinates in the radial profile of the finite element discretization. Substitution of solution
form (13) into the homogeneous form of Eq. (9) gives
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(K + imK; + ik, K; + m’Ky + mk,Ks + k2 Kg)V,, — ©*MV,, = 0 (14)

For circumferential periodicity, integer values must be used for circumferential mode number m. Two ei-
genproblems can be deduced depending on whether »? or k,, is chosen as the eigenvalue.

If o? is taken as the eigenvalue, then wave number k,, assumes assigned values in Eq. (14). This system is
Hermitian, since the real and purely imaginary matrices are symmetric and antisymmetric, respectively, and
only real eigenvalues w? are admitted. Doubling the algebraic eigensystem size reveals its real, symmetric
positive-definiteness.

K1 + m2K4 + kmmK5 -+ kiKé 7(mK2 + k,,1K3) Vm
(sz + ka3) K] -+ m2K4 + kmmK5 + k31K6 —Vm

(Y (%)

This eigenproblem consists of two identical subsystems, so that the eigensolution yields pairs of real w?
representing the same wave form except with a phase difference of n/2. This eigenproblem, denoted as
EVPI, is useful for establishing the frequency spectra for propagating modes.

If k, serves as the eigenvalue with assigned values for w?, Eq. (14) takes the form of a second order
algebraic eigenproblem.

(K + m’Ky — o’ M + imKy)V,, + k,,(mKs + iK3)V,, + 2KV, = 0 (16)

This eigenproblem, denoted as EVP2, can be converted to the following first order form

0 I | Vi ) o (17a)
—(Kl + m2K4 — O)ZM + lsz) —(mKs + 1K3) " K(, kam -

or in abbreviated form as

[A—Fk,BV,=0 (17b)
For a non-trivial solution of Eq. (17a), the determinant must vanish.
det/A — k,B] =0 (18)

Expansion of this determinant yields a polynomial equation for the eigenvalues. This equation serves as the
dispersion relation for our piezoelectric finite element model. If V,, is of dimension N, then system (17a) is
2N, and there will be 2N roots. Denote these roots by ,,, = ky..(m, *); they represent axial wave numbers
and can be real or complex-conjugate pairs. A real wave number £, is associated with a propagating wave,
and a purely imaginary or complex conjugate pair k,,, portrays a standing vibration in a semi-infinitely long
cylinder in which the amplitude exhibits monotonic or sinusoidal decay away from the origin. Associated
with each £k, are right and left eigenvectors, ¢,,, and ¥,, representing the thickness distributions of the
nodal displacement and electric potential. They satisfy the equations

A — kuBle,, =0 and [AT —k,,B]¥,, =0 (19)

The eigendata can be divided into two groups, one for traveling or decaying modes from the origin in the
positive z-direction and the other for motions in the opposite direction.
Furthermore, the right and left eigenvectors also satisfy the bi-orthogonality relations

‘PT B(pmp = 5qump7 ‘l‘;qA(pmp = 5qummepa (P7 q= 1727 e 52N) (2O>

mq
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where J,, is the Kronecker delta. The eigenvectors can also be partitioned into upper and lower halves as

N TN,
_ m _ ‘Pm _ mpu mpu 21
(pmp { (Pmpl v lepl kmp(pmpu ( )

In view of this partitioning, the orthogonality relations are
T T
¥ t]u(pmpu + kmp‘qulK6(pmpu = 517qu17

k ‘PT — ‘I’;ql [Kl + m2K4 - sz + isz](Pmpu - k”’P‘PZu]I [mK5 + iK3](Pmpu = 5qummep

mp X mqu ‘pmpu

(22)

The results by a computer code prepared for this paper were compared with the data of Paul and
Venkatesan (1987) as well as from data based on their analytical frequency equation. Also, comparisons
were made with that of Siao et al. (1994) using their material data, which should be noted were not nor-
malized by the free permittivity &, factor. Accuracies of three and four significant digits in frequencies and
wave numbers were seen.

Spectral plots

Two cylinders are considered herein; both composed of a PZT-4 material, whose properties are given in
Berlincourt et al. (1964). One cylinder is homogeneous, with the crystallographic axes oriented with the
coordinate directions and the properties are

[5.42969  3.03906 2.90234
5.42969  2.90234
4.49219
c= ' 10 (23)
symmetric : - 1.0 .
| . . . - 119531 | .
[ 0.84106 -
e= : : 0.84106 : (24)
| —0.34437 —0.34437 1.0 0
[1.46632
£= . 1.46632 (25)
L 1.29229 | .

where the four key reference parameters are (1) 2 = 1 m, (2) ¢ = c4y = 25.6 GPA, (3) & = e33 = 15.1 C/m?
and (4) p° = 7.50 x 10* kg/m?® so that & = 8.90664 x 10 F/m and E° = 1.69536 x 10° N/C. The other
cylinder is composed of two-layers. Each layer has thickness 2 = 1/2 m, and the longitudinal crystallo-
graphic axes of the two-layers are at £30° with the generator of the cylinder. The properties in this case are

[5.42969  3.00488  2.93652 F0.05920
5.17334  2.92432 F0.21566
B 4.70459 ¥0.19029
€= : 1.02197 : (26)
symmetric . . 1.04883 0.08457
L . . . . 1.14648 | ..
[ . - . 0.72838 +0.42053
e= | F0.17219 +0.62666 F0.29884 0.65525 . (27)
| —0.29823 —0.37136 0.93915  40.29387 L300
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1.46632 .
&= . 1.42280 =0.07535 (28)
sym . 1.33581 | .50
Based on these values, the normalized frequency is given by
1
o= wﬂ where g = W V/®/p® = 584.24 rad/s. (29)
0

Using a finite element model of 30 elements for the homogeneous PZT-4 cylinder, spectral data for
circumferential mode numbers m = 0,1 and shorted conditions on the inside and outside lateral surfaces
were determined. In Fig. 2, three-dimensional spectral plots for the homogeneous cylinder for circumfer-
ential mode numbers m = 0 and 1 with shorted circuit lateral surface conditions are shown. In these plots,
the real and imaginary wave numbers £, are normalized by the thickness #, i.e., Re(k,,4), and Im(k,,/), and
the normalized frequency is shown. A comparison of the frequency spectra of the propagating modes for
opened-opened and shorted—shorted lateral surface conditions for (m = 0, 1) is shown in Fig. 3. Observe
that there are spectral curves with dips that signify the presence of waves with negative group velocities.
This information is useful to have in energy conservation calculations in the study of reflected waves at the
free end of a semi-infinitely long cylinder subjected to a monochromatic incident wave. It is seen from Fig. 3
that there is no difference in the torsional spectra for these two cases. A three-dimensional plot of the
frequency spectra for the two-layer £30° angle-ply piezoelectric cylinder with opened—opened lateral sur-
face conditions is shown in Fig. 4. The characteristics in this plot are noticeably different to that for the
homogeneous cylinder.

10

8
¥ ¥
3 B
g gs\
& &
& &
B B 4
3 e
g £
Z, Z
2
0
0>
0

Fig. 2. Three-dimensional spectra for homogeneous piezoelectric cylinder for m = 0 and 1, shorted—shorted circuit lateral surface
conditions.
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Fig. 3. Frequency spectra comparison between opened—opened and shorted—shorted circuit conditions for m = 0 and 1.

Normalized Frequency (w/w) )

Fig. 4. Three-dimensional spectra for two-layer £30° piezoelectric cylinder For m = 0, opened—opened circuit lateral surface condi-
tions.
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5. Forced response to a steady-state load

Let F in Eq. (9) be a time harmonic load of frequency w. The 0-dependence of the load and hence the
response V' can be expressed by Fourier series as

(0 z, t 7|(ut Z F |mH and V(Q z, [ 7th Z V 11719 (30)

m=—0oQ m=—0Q

Substitution of Eq. (30) into (9) and suppressing the common factors give a series of differential equations
in m, each of the form

2

v, . 0 1AV,
K(, a2 + 1[mK5 + IK';] dz —

where the coefficient matrices of the differential operators are Hermitian.
A Fourier transform is used here to remove the z-dependence, where the Fourier transform pairs are

00 ) 1 00 )
Vo (k) :/ V,(z)e *dz,  V,(z) :2—/ Vo (k) €2 dk,, (32)

K, + m’K; — o*M + imK,)V,, + F,, = 0 (31)

The Fourier transform to Eq. (31) yields the algebraic equation.

(K2Kg + k,,[mKs + iK3] + [K; + m’Ky — 0*M + imK,))¥,, =1, (33)
Eq. (33) governs the mth circumferential harmonic in the transformed domain. The first step in the solution
of Eq. (33) involves the homogeneous equation, which is in fact EVP2, where the spectral decomposition of
the governing operator provides the complete set of eigendata. Thus, the solution of Eq. (33) can be
represented by a modal summation of the right eigenvectors, i.e.,

2N
= Z Xinn Pomnu (34)
n=1

where the coefficients y,,,’s are evaluated by substituting Eq. (34) into Eq. (33) and using bi-orthogonality
relations (22). With some algebra, the solution vector v,, in terms of the upper and lower half eigenvectors
can be put into the form

2N T ¢

3 ¥ g,
w3 35
v 1 (km - kmn)an (pmnu ( )

n=

The inverse Fourier transform of Eq. (35) recovers the axial dependence of the mth circumferential har-
monic.

Vin(2) znZ/ _"’"’ Py dk, (36)

In many problems, £, ¥, ®,., and B, will be independent of wave number £,,, so that application of the
Cauchy residue theorem yields the modal response in a straightforward way. As the eigendata can be di-
vided into two groups, k;, and x,, according to traveling and decaying motions from the origin along the
positive and negative z-directions, then V,,(z) can be written as

_ ¥ ot
V,,,(Z) =1 Z gnl (pmmt lkmnz +1 Z mnl mnu lkm”z (37)

km,,EICm kinn €5
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6. Steady-state Green’s function

For construction of Green’s function, consider a unit steady-state concentrated force or charge at a
source point in the cross-sectional plane z =0 at § = 0 and some radial distance ry. For convenience of
discussion, let ry coincide with a nodal surface. In representing this concentrated source load in Eq. (9),
F(6,z) takes the form

F(0,2) = 8(0)0(2)F, (38)

where J(-) is the Dirac delta function. The vector F, is used to define the location and type of the unit point
source, i.e., a unit force or a unit charge. Thus, F, will contain zero entries throughout except at nodal
surface » = », where either a load with components (o, o, %.) or a unit charge o, = 1 is prescribed.

Since our forced vibration solution procedure involves the expansion of 4(6) in Fourier series and it is
well known that such a representation of it does not converge, it is necessary to replace the point source by
a uniform spatial pulse of intensity g, over a narrow circumferential wide 2,0, For equivalence of a unit
concentrated load, ¢, is given by

0 1
=1 =
/90 qorodo or qo RN (39)

For the case of a unit electric charge, the charge density p, will have the corresponding form
1

= 40
Pe =500 (40)
Therefore, F(0,z) in Eq. (38), for a unit force or unit charge, takes the form
> 1 sinmb

F(0,z) = m;@ ¢"'F,(z) where F,(z) = r— CFyd(z) (41)
and its Fourier transform is

~ 1 sinmb,

f,(k,) ==— F 42

( ) 27'6}”0 mHO 0 ( )

Substituting of Eq. (42) into Eq. (37) and considering motions only in the positive z-direction yield the mth
circumferential mode of displacement Green function. Thus the steady-state unit concentrated generalized
force point source takes the form of a series of circular ring-like sources. The displacement Green function
is then represented by the summation of these individual circumferential modal responses, i.e.,

0 l >0 Sinm90 (‘Pmnl)TFO iknz
Vi) = Y Val2) > S e, 220 (43)

27U’() m@o , Bm,,
kmn €5y,

m=—0o0 m=—00

7. Numerical examples

The precision of Green’s function is tied to the number of terms used in the double series representation.
Each series entails its own issues, and they were discussed in Zhuang et al. (1999) for a mechanical cylinder.
Their conclusions will be seen to apply here equally well from the discussion of our numerical examples.

In the representation of a point load, in the circumferential direction by a uniform pulse over a short arc
length, Zhuang et al. (1999) gave a plot showing the number of modes versus pulse width for accuracies
from 90% to 99%. This plot serves as guidance for a unit charge since it is merely another point source.



H. Bai et al. | International Journal of Solids and Structures 41 (2004) 6335-6350 6345

Even though a relatively large number of terms are needed for representing a uniform pulse over a short
circumferential distance, Zhuang et al. (1999) demonstrated that substantially fewer terms were required for
comparable accuracy of the stresses and displacements. The following examples, using the same two cyl-
inders for which spectral plots were given in Section 4, will show the same convergence rates. In both
examples, a normalized steady-state frequency of w = 1.5 was used.

7.1. Homogeneous PZT-4 cylinder

In this example, both opened—opened and shorted—shorted circuit surface conditions were considered.
The unit load requires ring-like circumferential loads to be summed. With regards to this circumferential

0038 009
=10
M) =20 m =20
0036 M) =40 008 1M} =40
Tooml F o7 /
0032 | 006
M =10
0030 . . . 005 . :
05 075 L 125 15 05 075 1 125 15
r
003 0004
1M = 10
0003
;* = 0002 M}=20
0001
M) =40 /
M =60
0000
[ 075 125 15

~ -

@

0.02

-
& _
= o0 M =20 &
1M = 40
—
M = 60 M| =60
000 000 . 1M] =60,
05 075 1 125 15 05 075 1 125 15
r
0.12 0.10
1M =20
0.08 j‘\_’i—‘
Y T g oos b
004
1M =40
1M =60
0.00 0.00 . . A
05 075 1 125 15 05 075 1 125 15
(b) i’ r

Fig. 5. (a) Comparison of generalized displacements of Green’s function for homogeneous PZT-4 cylinder due to unit radial force,
opened-opened circuit conditions. (b) Comparison of generalized stresses of Green’s function for homogeneous PZT-4 cylinder due to
unit radial force, opened-opened circuit conditions.
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summation for representation of the force and charge point sources acting on the outer surface of the
cylinder, these source terms were approximated by a uniform pulse over a half circumferential width of
0.001 radians. The response was calculated with sum total of circumferential mode numbers of m = 10, 20,
40, 60, 80 and 100. As the accuracy is also related to the discretized profile, different size models, i.e., 10, 20,
30, 40, 50 and 60 elements were used. For all circumferential wave numbers, at least 30 elements were
observed to be sufficient for good precision of the near-field quantities, which were examined at 0 = /4
and z = h/4. For the specific case of a unit radial point load on the outer surface, the convergence char-
acteristics as a function of number of circumferential modes are shown in Fig. 5(a and b). With a 30 element
model, displacements and potential converged within twenty (20) circumferential modes, and stresses and
electric displacement component D, with forty (40) modes. Sums with more than these minimum numbers

0.1

0.080 |
008

0.060
0.06

—
B3 =
= = F
o0t | = 0040
002 0.020 |
e o
0 0.000 |
05 0.75 1 125 15 05 075 1 125 15
r r
0.1 0.008

0.5 0.75 1 125 15 05 0.75 1 125 15
r r

Fig. 6. Generalized displacements in an opened-opened cylinder along (r,7/4,h/4) due to external loads applied at (rou,0,0) for
o = 1.5 ((—8—): radial load, (—<——): circumferential load, (—A—): axial load, (—&—): point charge).

003 015
002 010
— -
& &
oot 005
000 000 s
0s 075 1 125 15 05 075 1 125 15
r r
020 010
008
015
006 |
— o010 -
& Soos k
005 00
0.00 - + + 0.00 . "
05 075 1 125 15 05 075 1 125 15
r r

Fig. 7. Generalized stresses in an opened—opened cylinder along (r, n/4,4/4) due to external loads applied at (roy, 0,0) for @ = 1.5
((—8—): radial load, (—<——): circumferential load, (—A——): axial load, (—&—): point charge).
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of modes showed a diminishing return on further accuracy. It is not surprising that more terms are needed
for stresses than displacements since stress calculations require differentiation of the kinematic field. In
examining the balance between the work of the ring-like source and the energy of the response field, dif-
ferences of less than 0.01% were observed for all the cases.

Displacement, stress, electric displacement and potential profiles at the near field location of
(0,z) = (n/4,h/4) are shown in Figs. 6-9 for opened-opened and shorted—shorted circuit conditions,
respectively, and for the complete ser of point sources. Obviously, there are no results for a surface charge
in Figs. 8 and 9 since the outer surface is grounded. Also note that since the electric potential is known only
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Fig. 8. Generalized displacements in a shorted-shorted cylinder along (r,n/4,h/4) due to external loads applied at (roy,0,0) for
o = 1.5 ((—B8—): radial load, (—<——): circumferential load, (—A—): axial load, (—&—): point charge).
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to within an arbitrary constant for the opened—opened circuit condition, the inner surface can be grounded
without loss of generality. From Figs. 6 and 8, observe that the radial and circumferential displacements
dominate the response for radial and circumferential source loads, while axial displacement and electric
potential manifest greater responses for the axial point load and the electric charge. This behavior is due to
the nature of the PZT-4 material that evinces strong piezoelectric coupling between the axial components of
stress and electric field, E.. The shear stress 7., is much smaller than the other components as seen in Figs. 7

and 9.
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Fig. 10. (a) Generalized displacements of Green’s function for a two-layer opened-opened piezoelectric cylinder due to a radial point
load on the outer surface. (b) Generalized stresses of Green’s function for a two-layer opened—opened piezoelectric cylinder due to a
radial point load on the outer surface.
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7.2. Two-layer PZT-4 cylinder

In this example, opened—opened lateral surface conditions were assumed. It was again found that for a
normalized steady-state frequency of w =1.5, 30 elements were deemed to be sufficient for good precision of
the near-field quantities. The convergence characteristics are shown in Fig. 10(a and b) for a unit radial load
on the outer surface. Convergence was obtained with essentially the same number of circumferential modes
as the homogeneous PZT-4 cylinder. Profile plots of the displacement, stress, electric displacement and
potential at the near field location of (0,z) = (n/4,h/4) are shown in Figs. 11 and 12 for the set of point
loads and point charge.
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Fig. 11. Generalized displacements for a two-layered piezoelectric cylinder due to a point load ((—&—): radial load, (—<¢—):
circumferential load, (—A—): axial load, (—&—): point charge).
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Fig. 12. Generalized stresses for a two-layered piezoelectric cylinder due to a point load ((—8—): radial load, (—<&—): cir-
cumferential load, (—A—): axial load, (—&—): point charge).
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8. Conclusions

Steady-state Green functions for a laminated piezoelectric cylinder were constructed where the cir-
cumferential behavior was represented by Fourier series and the axial dependence treated by a Fourier
transform. Their implementation is based on modal data from the spectral decomposition of the differential
operator of the governing equation. Our Green’s functions are essentially by a double summation of these
data. The convergence and precision of this double summation was discussed for the two cylinders, con-
sidering both opened—opened and shorted—shorted electric surface conditions. The study of the convergence
characteristics revealed the necessary number of elements in the radial discretization as well as the required
number of circumferential modes for an acceptable precision of the Green’s functions depicting the four
different source terms, i.e., mechanical loads and electric charge. The required number of modes in their
representations was quite nominal and was far from being exorbitantly large. Thus, Green’s functions in
these forms should be useful in other applications.
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