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Abstract

Elastodynamic Green’s functions for a piezoelectric structure represent the electro-mechanical response due to a

steady-state point source as either a unit force or a unit charge. Herein, Green’s functions for a laminated circular

piezoelectric cylinder are constructed by means of the superposition of modal data from the spectral decomposition of

the operator of the equations governing its dynamic behavior. These governing equations are based on a semi-analytical

finite element formulation where the discretization occurs through the cylinder’s thickness. Examples of a homogeneous

PZT-4 cylinder and a two-layer cylinder composed of a PZT-4 material at crystal orientations of ±30� with the lon-

gitudinal axis are presented. Numerical implementation details for these two circular cylinders show the convergence

and accuracy of these Green’s functions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Free vibration analysis of a structure, or alternatively the spectral decomposition of the operator of its

governing equation, yields modal data, which can be used to characterize the structural response due to a

myriad of forced inputs. Herein, we are concerned with the construction of Green’s functions for a lami-

nated circular cylinder based on modal data established by the procedure of Siao et al. (1994). The cylinder
under consideration may be composed of any number of uniform thickness piezoelectric layers, where each

layer may have its own material properties. The availability of Green’s functions will enable methods to be

formulated for examining the wave scattering phenomena in such cylinders in the presence of flaws such as
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cracks and delaminations. It is hoped that useful ideas for structural health monitoring will emerge from

this path of investigation.

The free axisymmetric and flexural vibrations of a circular piezoelectric cylinder whose material belongs

to crystal class 6mm were first studied by Paul (1962, 1966). Numerical exploration of his frequency
equations in the long wave length regime was first attempted by Paul and Raju (1981, 1982) by means of

asymptotic analysis. Subsequently, Paul and Venkatesan (1987) provided numerical data for a wide range

of wave lengths under various combinations of opened and shorted circuit conditions on the two lateral

surfaces of a hollow cylinder. Ding et al. (1997) and Chen et al. (2004) presented analytic solutions for the

free vibration of piezoelectric cylinders filled with a compressible fluid, wherein results for a cylinder

without fluid were also given. Buchanan and Peddieson (1989, 1991) computed the natural frequencies of

propagating waves for infinitely long piezoelectric cylinders using a one-dimensional finite element model in

the radial direction. Siao et al. (1994), employing the same radial discretization procedure and a semi-
analytical finite element formulation, determined spectral data for both propagating waves and edge

vibrations in such cylinders. More recently, Hussein and Heyliger (1998) presented a free vibration analysis

of laminated piezoelectric cylindrical shells using a semi-analytical discrete-layer model. While the bulk of

the literature is concerned with free vibration analyses, some studies on forced response have appeared; see,

for example, Ding et al. (2003), who considered the transient axisymmetric plane strain response of a

hollow piezoelectric cylinder. For additional references on topics related to piezoelectric structures, see

D€okmeci (1980, 1989) whose surveys elaborate on a wide range of subjects, including many on finite ele-

ment calculations.
Siao et al. (1994) presented a method for determining the eigendata for a circular laminated piezoelectric

cylinder. Such data consist of a finite basis of propagating waves and edge vibrations, as contrasted with an

infinity of these eigenmodes had an analytical solution procedure been used. Nevertheless, such numerical

eigendata can be made as accurate as necessary by appropriate discretization of the thickness profile. Since

one-dimensional elements are used, the computational cost associated with a very fine model is modest vis-

a-vis models based on multi-dimensional interpolations. Herein, we utilize this method to establish the

eigendata for construction of an elastodynamic steady-state Green function for such a cylinder. This

construction is based on a modal representation of a singular source term. Examples of such Green’s
functions for two-dimensional laminated anisotropic plates and laminated anisotropic circular cylinders

were given by Zhu et al. (1995) and Zhuang et al. (1999), respectively. Green’s function is essential to

quantitative non-destructive evaluations of crack sizes and locations, delaminations, and other flaws in a

structure. They are used to describe the loading conditions on the flaws and they comprise the kernels in

boundary element analyses. This approach is attractive because of the relative ease in forming boundary

integral in the presence of crack-tip singularity; see, for example, Zhu et al. (1995).

In the next section, the dependent variables are summarized and a non-dimensionalization is invoked.

Then, the governing equations of motion and boundary conditions are given and two eigenproblems are
discussed. Next, a steady-state solution for a time harmonic forced input is given by means of a Fourier

transform. Based on this solution, an elastodynamic Green’s function for the laminated piezoelectric cyl-

inder can be constructed. Examples of Green’s functions are given for a homogeneous PZT-4 cylinder and

for a two-layer cylinder of same material but with their crystallographic axes oriented at ±30� with the

generator.
2. Preliminaries

Consider an infinitely long laminated piezoelectric circular cylinder as shown in Fig. 1 where cylindrical

coordinates ðr; h; zÞ have been adopted. The primary dependent variables in this problem are: mechanical
displacement u ¼ ½ur; uh; uz�T; stress T ¼ ½Trr; Thh; Tzz; Thz; Trz; Trh�T; strain S ¼ ½Srr; Shh; Szz; Shz; Szr; Srh�T; electric
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Fig. 1. Laminated piezoelectric cylinder.
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displacement D ¼ ½Dr;Dh;Dz�T; and electric field E ¼ ½Er;Eh;Ez�T, where E ¼ �r/ with / as the electric

potential. It is convenient to concatenate the mechanical and electrical dependent variables into arrays.
q ¼ S

E

� �
9�1

; Q ¼ T

D

� �
9�1

; v ¼ u

/

� �
4�1

ð1Þ
For a given cylindrical lamina, the piezoelectric constitutive relation in terms of the concatenated

variables is given by
Q ¼ C�q where C� ¼ c �eT

e e

� �
ð2Þ
with c, e and e as the matrices of the elastic anisotropic moduli (6 · 6), piezoelectric constants (3 · 6) and
dielectric constants (3 · 3), respectively. Also, there are nine generalized deformational relations, q ¼ Lv,

where operator L contains the linear cylindrical coordinates differential operators relating the strain and

electric field to the mechanical displacement and potential.

Dimensionless variables are used herein to preclude numerical anomalies due to large differences in the
units between the various material properties. In setting forth this non-dimensionalization, regard all

quantities on the right-hand and left-hand sides, respectively, of each defining equation to be the dimen-

sional and their corresponding dimensionless form. Four key properties are selected as the reference values,

viz., (1) total cylinder thickness h, (2) an elastic modulus, c0, (3) a piezoelectric constant e0, and (4) mass

density q0 where c0, e0 and q0 are of a particular laminate in the cylinder’s radial profile. The geometry and

mechanical displacements, the material constants and mass densities are normalized as
r ¼ r
h
; z ¼ z

h
; ui ¼

ui
h
; ði ¼ r; h; zÞ ð3Þ

cpq ¼
cpq
c0

; eij ¼
eij
e0
; eip ¼

eip
e0

; qi ¼
qi

q0
; ðp; q ¼ 1; 2; 3; . . . ; 6Þ; ði; j ¼ 1; 2; 3Þ ð4Þ
where e0 is the reference dielectric constant given by e0 ¼ ðe0Þ2=c0. Introduce E0 and t0 as
E0 ¼ c0

e0
; t0 ¼

ffiffiffiffiffi
q0

c0

r
h ð5Þ
With these parameters, time t and electric potential / take the non-dimensional forms
t ¼ t
t0

and / ¼ /
E0h

ð6Þ
All of the other variables are rendered dimensionless by
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Tp ¼
Tp
c0

; Sp ¼ Sp; pð ¼ 1; 2; . . . ; 6Þ; Dk ¼
Dk

e0
; Ek ¼

Ek

E0
; kð ¼ 1; 2; 3Þ ð7Þ
Lastly, the normalized charge qe and body force density component fi are given by
qe ¼
hqe

e0
; fi ¼

hfi
c0

; ið ¼ r; h; zÞ ð8Þ
This non-dimensionalization scheme yields all dimensionless equations in the same form as their dimen-

sional counterparts.
3. Governing equation and boundary conditions

The equations of motion in Siao et al. (1994) are based on a semi-analytical finite element formulation,

where the discretization of the laminated cylinder takes the form of a series of three-node cylindrical

laminas, each capable of having its own piezoelectric properties and thickness. In each three-node element,

a quadratic interpolation field is used radially but the axial, circumferential and time dependencies are left

undetermined at the outset. Hamilton’s principle with Tiersten’s (1969) electric enthalpy as the energy
functional was used to derive the following matrix equations of motion.
K1Vþ K2V;h þK3V;z �K4V;hh �K5V;hz �K6V;zz þM€V ¼ F ð9Þ

where V is an ordered set of nodal variables for all of the nodes in the finite element model of the cylinder.

The stiffness and consistent mass matrices, Ki’s and, M can be found in Siao et al. (1994), where K1, K4, K5

and K6 are symmetric, while K2 and K3 are antisymmetric. The consistent load F is obtained by integrating

the product of the radial interpolation functions N and the mechanical loads and electric charge over the

radial profile of the cylinder.
F ¼
Z
r
NT f

�qe

� �
rdr ð10Þ
where f contains the components of the mechanical load and qe is the charge density.

Homogeneous boundary conditions on the lateral surfaces and end cross-section can be stated as fol-

lows. For a hollow cylinder with inside and outside radii, rin and rout, traction-free surfaces require that
Trr ¼ Trh ¼ Tzr ¼ 0 ð11Þ

The electrical condition may take the form of an opened circuit (surface is uncoated) where the radial

electric displacement component Dr must vanish or a shorted-circuited condition (a coated lateral surface

that is grounded) where the potential / (or voltage) vanishes
Dr ¼ 0 or / ¼ 0 ð12Þ
4. Free vibration analyses

For free vibrations, the solution form is
V ¼ Vm expfiðkmzþ mh� xtÞg ð13Þ

where x is the circular frequency, ðkm;mÞ are the axial and circumferential wave numbers, and Vm is the
array of nodal coordinates in the radial profile of the finite element discretization. Substitution of solution

form (13) into the homogeneous form of Eq. (9) gives
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ðK1 þ imK2 þ ikmK3 þ m2K4 þ mkmK5 þ k2mK6ÞVm � x2MVm ¼ 0 ð14Þ
For circumferential periodicity, integer values must be used for circumferential mode number m. Two ei-

genproblems can be deduced depending on whether x2 or km is chosen as the eigenvalue.

If x2 is taken as the eigenvalue, then wave number km assumes assigned values in Eq. (14). This system is
Hermitian, since the real and purely imaginary matrices are symmetric and antisymmetric, respectively, and

only real eigenvalues x2 are admitted. Doubling the algebraic eigensystem size reveals its real, symmetric

positive-definiteness.
K1 þ m2K4 þ kmmK5 þ k2mK6 �ðmK2 þ kmK3Þ
ðmK2 þ kmK3Þ K1 þ m2K4 þ kmmK5 þ k2mK6

� �
Vm

�Vm

� �

¼ x2 M 0

0 M

� �
Vm

�Vm

� �
ð15Þ
This eigenproblem consists of two identical subsystems, so that the eigensolution yields pairs of real x2

representing the same wave form except with a phase difference of p=2. This eigenproblem, denoted as

EVP1, is useful for establishing the frequency spectra for propagating modes.

If km serves as the eigenvalue with assigned values for x2, Eq. (14) takes the form of a second order
algebraic eigenproblem.
ðK1 þ m2K4 � x2M þ imK2ÞVm þ kmðmK5 þ iK3ÞVm þ k2mK6Vm ¼ 0 ð16Þ
This eigenproblem, denoted as EVP2, can be converted to the following first order form
0 I

�ðK1 þ m2K4 � x2Mþ imK2Þ �ðmK5 þ iK3Þ

� ��
� km

I

K6

� ��
Vm

kmVm

� �
¼ 0 ð17aÞ
or in abbreviated form as
A½ � kmB�Vm ¼ 0 ð17bÞ
For a non-trivial solution of Eq. (17a), the determinant must vanish.
det½A� kmB� ¼ 0 ð18Þ
Expansion of this determinant yields a polynomial equation for the eigenvalues. This equation serves as the

dispersion relation for our piezoelectric finite element model. If Vm is of dimension N , then system (17a) is

2N , and there will be 2N roots. Denote these roots by kmn ¼ kmnðm;x2Þ; they represent axial wave numbers

and can be real or complex-conjugate pairs. A real wave number kmn is associated with a propagating wave,

and a purely imaginary or complex conjugate pair kmn portrays a standing vibration in a semi-infinitely long

cylinder in which the amplitude exhibits monotonic or sinusoidal decay away from the origin. Associated

with each kmn are right and left eigenvectors, umn and Wmn representing the thickness distributions of the
nodal displacement and electric potential. They satisfy the equations
A½ � kmnB�umn ¼ 0 and AT
�

� kmnB
	
Wmn ¼ 0 ð19Þ
The eigendata can be divided into two groups, one for traveling or decaying modes from the origin in the

positive z-direction and the other for motions in the opposite direction.
Furthermore, the right and left eigenvectors also satisfy the bi-orthogonality relations
WT
mqBump ¼ dpqBmp; WT

mqAump ¼ dpqkmpBmp; p; qð ¼ 1; 2; . . . ; 2NÞ ð20Þ
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where dpq is the Kronecker delta. The eigenvectors can also be partitioned into upper and lower halves as
ump ¼
/mpu

umpl

� �
¼ Wmp ¼

Wmpu

Wmpl

� �
umpu

kmpumpu

� �
ð21Þ
In view of this partitioning, the orthogonality relations are
WT
mquumpu þ kmpW

T
mqlK6umpu ¼ dpqBmp

kmpW
T
mquumpu �WT

mql½K1 þ m2K4 � x2Mþ imK2�umpu � kmpW
T
mql½mK5 þ iK3�umpu ¼ dpqkmpBmp

ð22Þ
The results by a computer code prepared for this paper were compared with the data of Paul and

Venkatesan (1987) as well as from data based on their analytical frequency equation. Also, comparisons

were made with that of Siao et al. (1994) using their material data, which should be noted were not nor-

malized by the free permittivity e0 factor. Accuracies of three and four significant digits in frequencies and

wave numbers were seen.

Spectral plots

Two cylinders are considered herein; both composed of a PZT-4 material, whose properties are given in

Berlincourt et al. (1964). One cylinder is homogeneous, with the crystallographic axes oriented with the

coordinate directions and the properties are
c ¼

5:42969 3:03906 2:90234 � � �
� 5:42969 2:90234 � � �
� � 4:49219 � � �
� � � 1:0 � �
� symmetric � � 1:0 �
� � � � � 1:19531

2
6666664

3
7777775

0�

ð23Þ

e ¼
� � � � 0:84106 �
� � � 0:84106 � �

�0:34437 �0:34437 1:0 � � �

2
4

3
5

0�

ð24Þ

e ¼
1:46632 � �

� 1:46632 �
� � 1:29229

2
4

3
5

0�

ð25Þ
where the four key reference parameters are (1) h ¼ 1 m, (2) c0 ¼ c44 ¼ 25:6 GPA, (3) e0 ¼ e33 ¼ 15:1 C/m2

and (4) q0 ¼ 7:50� 104 kg/m3 so that e0 ¼ 8:90664� 10�9 F/m and E0 ¼ 1:69536 � 109 N/C. The other
cylinder is composed of two-layers. Each layer has thickness h ¼ 1=2 m, and the longitudinal crystallo-

graphic axes of the two-layers are at ±30� with the generator of the cylinder. The properties in this case are
c ¼

5:42969 3:00488 2:93652 �0:05920 � �
� 5:17334 2:92432 �0:21566 � �
� � 4:70459 �0:19029 � �
� � � 1:02197 � �
� symmetric � � 1:04883 �0:08457
� � � � � 1:14648

2
6666664

3
7777775

�30�

ð26Þ

e ¼
� � � � 0:72838 �0:42053

�0:17219 �0:62666 �0:29884 0:65525 � �
�0:29823 �0:37136 0:93915 �0:29387 � �

2
4

3
5

�30�

ð27Þ
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e ¼
1:46632 � �

� 1:42280 �0:07535
sym � 1:33581

2
4

3
5

�30�

ð28Þ
Based on these values, the normalized frequency is given by
x ¼ x
x0

where x0 ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffi
c0=q0

p
¼ 584:24 rad=s: ð29Þ
Using a finite element model of 30 elements for the homogeneous PZT-4 cylinder, spectral data for

circumferential mode numbers m ¼ 0; 1 and shorted conditions on the inside and outside lateral surfaces
were determined. In Fig. 2, three-dimensional spectral plots for the homogeneous cylinder for circumfer-

ential mode numbers m ¼ 0 and 1 with shorted circuit lateral surface conditions are shown. In these plots,

the real and imaginary wave numbers km are normalized by the thickness h, i.e., ReðkmhÞ, and ImðkmhÞ, and
the normalized frequency is shown. A comparison of the frequency spectra of the propagating modes for

opened–opened and shorted–shorted lateral surface conditions for ðm ¼ 0; 1Þ is shown in Fig. 3. Observe

that there are spectral curves with dips that signify the presence of waves with negative group velocities.

This information is useful to have in energy conservation calculations in the study of reflected waves at the

free end of a semi-infinitely long cylinder subjected to a monochromatic incident wave. It is seen from Fig. 3
that there is no difference in the torsional spectra for these two cases. A three-dimensional plot of the

frequency spectra for the two-layer ±30� angle-ply piezoelectric cylinder with opened–opened lateral sur-

face conditions is shown in Fig. 4. The characteristics in this plot are noticeably different to that for the

homogeneous cylinder.
Three-dimensional spectra for homogeneous piezoelectric cylinder for m ¼ 0 and 1, shorted–shorted circuit lateral surface

ions.



Fig. 3. Frequency spectra comparison between opened–opened and shorted–shorted circuit conditions for m ¼ 0 and 1.

Fig. 4. Three-dimensional spectra for two-layer ±30� piezoelectric cylinder For m ¼ 0, opened–opened circuit lateral surface condi-

tions.
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5. Forced response to a steady-state load

Let F in Eq. (9) be a time harmonic load of frequency x. The h-dependence of the load and hence the

response V can be expressed by Fourier series as
F h; z; tð Þ ¼ e�ixt
X1

m¼�1
FmðzÞeimh and V h; z; tð Þ ¼ e�ixt

X1
m¼�1

VmðzÞeimh ð30Þ
Substitution of Eq. (30) into (9) and suppressing the common factors give a series of differential equations

in m, each of the form
K6

d2Vm

dz2
þ i½mK5 þ iK3�

dVm

dz
� ½K1 þ m2K4 � x2Mþ imK2�Vm þ Fm ¼ 0 ð31Þ
where the coefficient matrices of the differential operators are Hermitian.

A Fourier transform is used here to remove the z-dependence, where the Fourier transform pairs are
~vmðkmÞ ¼
Z 1

�1
VmðzÞe�ikmz dz; VmðzÞ ¼

1

2p

Z 1

�1
~vmðkmÞeikmz dkm ð32Þ
The Fourier transform to Eq. (31) yields the algebraic equation.
k2mK6



þ km½mK5 þ iK3� þ ½K1 þ m2K4 � x2Mþ imK2�

�
~vm ¼ ~fm ð33Þ
Eq. (33) governs the mth circumferential harmonic in the transformed domain. The first step in the solution

of Eq. (33) involves the homogeneous equation, which is in fact EVP2, where the spectral decomposition of

the governing operator provides the complete set of eigendata. Thus, the solution of Eq. (33) can be

represented by a modal summation of the right eigenvectors, i.e.,
~vm ¼
X2N
n¼1

vmnumnu ð34Þ
where the coefficients vmn’s are evaluated by substituting Eq. (34) into Eq. (33) and using bi-orthogonality

relations (22). With some algebra, the solution vector ~vm in terms of the upper and lower half eigenvectors

can be put into the form
~vm ¼
X2N
n¼1

WT
mnl

~fm
ðkm � kmnÞBmn

umnu ð35Þ
The inverse Fourier transform of Eq. (35) recovers the axial dependence of the mth circumferential har-

monic.
VmðzÞ ¼
1

2p

X2N
n¼1

Z 1

�1

WT
mnl

~fm
ðkm � kmnÞBmn

umnue
ikmz dkm ð36Þ
In many problems, ~fm, Wmn, umn and Bmn will be independent of wave number km, so that application of the

Cauchy residue theorem yields the modal response in a straightforward way. As the eigendata can be di-

vided into two groups, jþ
m and j�

m , according to traveling and decaying motions from the origin along the

positive and negative z-directions, then VmðzÞ can be written as
VmðzÞ ¼ i
X

kmn2jþm

WT
mnl

~fm
Bmn

umnue
ikmnz þ i

X
kmn2j�m

WT
mnl

~fm
Bmn

umnue
ikmnz ð37Þ
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6. Steady-state Green’s function

For construction of Green’s function, consider a unit steady-state concentrated force or charge at a

source point in the cross-sectional plane z ¼ 0 at h ¼ 0 and some radial distance r0. For convenience of
discussion, let r0 coincide with a nodal surface. In representing this concentrated source load in Eq. (9),

Fðh; zÞ takes the form
F h; zð Þ ¼ dðhÞdðzÞF0 ð38Þ
where dð�Þ is the Dirac delta function. The vector F0 is used to define the location and type of the unit point

source, i.e., a unit force or a unit charge. Thus, F0 will contain zero entries throughout except at nodal

surface r ¼ r0 where either a load with components ðar; ah; azÞ or a unit charge aq ¼ 1 is prescribed.

Since our forced vibration solution procedure involves the expansion of dðhÞ in Fourier series and it is

well known that such a representation of it does not converge, it is necessary to replace the point source by

a uniform spatial pulse of intensity q0 over a narrow circumferential wide 2r0h0 For equivalence of a unit

concentrated load, q0 is given by
Z h0

�h0

q0r0 dh ¼ 1 or q0 ¼
1

2r0h0
ð39Þ
For the case of a unit electric charge, the charge density qe will have the corresponding form
qe ¼
1

2r0h0
ð40Þ
Therefore, Fðh; zÞ in Eq. (38), for a unit force or unit charge, takes the form
Fðh; zÞ ¼
X1

m¼�1
eimhFmðzÞ where FmðzÞ ¼

1

2pr0

sinmh0
mh0

F0dðzÞ ð41Þ
and its Fourier transform is
~fmðkmÞ ¼
1

2pr0

sinmh0
mh0

F0 ð42Þ
Substituting of Eq. (42) into Eq. (37) and considering motions only in the positive z-direction yield the mth
circumferential mode of displacement Green function. Thus the steady-state unit concentrated generalized

force point source takes the form of a series of circular ring-like sources. The displacement Green function

is then represented by the summation of these individual circumferential modal responses, i.e.,
VðzÞ ¼
X1

m¼�1
VmðzÞ ¼

i

2pr0

X1
m¼�1

sinmh0
mh0

X
kmn2jþm

ðWmnlÞTF0

Bmn
umnue

ikmnz; zP 0 ð43Þ
7. Numerical examples

The precision of Green’s function is tied to the number of terms used in the double series representation.

Each series entails its own issues, and they were discussed in Zhuang et al. (1999) for a mechanical cylinder.

Their conclusions will be seen to apply here equally well from the discussion of our numerical examples.

In the representation of a point load, in the circumferential direction by a uniform pulse over a short arc
length, Zhuang et al. (1999) gave a plot showing the number of modes versus pulse width for accuracies

from 90% to 99%. This plot serves as guidance for a unit charge since it is merely another point source.
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Even though a relatively large number of terms are needed for representing a uniform pulse over a short

circumferential distance, Zhuang et al. (1999) demonstrated that substantially fewer terms were required for

comparable accuracy of the stresses and displacements. The following examples, using the same two cyl-

inders for which spectral plots were given in Section 4, will show the same convergence rates. In both
examples, a normalized steady-state frequency of x ¼ 1:5 was used.
7.1. Homogeneous PZT-4 cylinder

In this example, both opened–opened and shorted–shorted circuit surface conditions were considered.

The unit load requires ring-like circumferential loads to be summed. With regards to this circumferential
Fig. 5. (a) Comparison of generalized displacements of Green’s function for homogeneous PZT-4 cylinder due to unit radial force,

opened–opened circuit conditions. (b) Comparison of generalized stresses of Green’s function for homogeneous PZT-4 cylinder due to

unit radial force, opened–opened circuit conditions.
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summation for representation of the force and charge point sources acting on the outer surface of the

cylinder, these source terms were approximated by a uniform pulse over a half circumferential width of

0.001 radians. The response was calculated with sum total of circumferential mode numbers of m ¼ 10, 20,

40, 60, 80 and 100. As the accuracy is also related to the discretized profile, different size models, i.e., 10, 20,
30, 40, 50 and 60 elements were used. For all circumferential wave numbers, at least 30 elements were

observed to be sufficient for good precision of the near-field quantities, which were examined at h ¼ p=4
and z ¼ h=4. For the specific case of a unit radial point load on the outer surface, the convergence char-

acteristics as a function of number of circumferential modes are shown in Fig. 5(a and b). With a 30 element

model, displacements and potential converged within twenty (20) circumferential modes, and stresses and

electric displacement component Dz with forty (40) modes. Sums with more than these minimum numbers
Fig. 6. Generalized displacements in an opened–opened cylinder along ðr;p=4; h=4Þ due to external loads applied at ðrout; 0; 0Þ for

x ¼ 1:5 (( ): radial load, ( ): circumferential load, ( ): axial load, ( ): point charge).

Fig. 7. Generalized stresses in an opened–opened cylinder along ðr; p=4; h=4Þ due to external loads applied at ðrout; 0; 0Þ for x ¼ 1:5

(( ): radial load, ( ): circumferential load, ( ): axial load, ( ): point charge).



H. Bai et al. / International Journal of Solids and Structures 41 (2004) 6335–6350 6347
of modes showed a diminishing return on further accuracy. It is not surprising that more terms are needed

for stresses than displacements since stress calculations require differentiation of the kinematic field. In

examining the balance between the work of the ring-like source and the energy of the response field, dif-

ferences of less than 0.01% were observed for all the cases.
Displacement, stress, electric displacement and potential profiles at the near field location of

ðh; zÞ ¼ ðp=4; h=4Þ are shown in Figs. 6–9 for opened–opened and shorted–shorted circuit conditions,

respectively, and for the complete ser of point sources. Obviously, there are no results for a surface charge

in Figs. 8 and 9 since the outer surface is grounded. Also note that since the electric potential is known only
Fig. 8. Generalized displacements in a shorted–shorted cylinder along ðr;p=4; h=4Þ due to external loads applied at ðrout; 0; 0Þ for

x ¼ 1:5 (( ): radial load, ( ): circumferential load, ( ): axial load, ( ): point charge).

Fig. 9. Generalized stresses in a shorted–shorted cylinder along ðr; p=4; h=4Þ due to external loads applied at ðrout; 0; 0Þ for x ¼ 1:5

(( ): radial load, ( ): circumferential load, ( ): axial load, ( ): point charge).
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to within an arbitrary constant for the opened–opened circuit condition, the inner surface can be grounded

without loss of generality. From Figs. 6 and 8, observe that the radial and circumferential displacements

dominate the response for radial and circumferential source loads, while axial displacement and electric

potential manifest greater responses for the axial point load and the electric charge. This behavior is due to
the nature of the PZT-4 material that evinces strong piezoelectric coupling between the axial components of

stress and electric field, Ez. The shear stress Tzr is much smaller than the other components as seen in Figs. 7

and 9.
Fig. 10. (a) Generalized displacements of Green’s function for a two-layer opened–opened piezoelectric cylinder due to a radial point

load on the outer surface. (b) Generalized stresses of Green’s function for a two-layer opened–opened piezoelectric cylinder due to a

radial point load on the outer surface.
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7.2. Two-layer PZT-4 cylinder

In this example, opened–opened lateral surface conditions were assumed. It was again found that for a

normalized steady-state frequency of x ¼1.5, 30 elements were deemed to be sufficient for good precision of
the near-field quantities. The convergence characteristics are shown in Fig. 10(a and b) for a unit radial load

on the outer surface. Convergence was obtained with essentially the same number of circumferential modes

as the homogeneous PZT-4 cylinder. Profile plots of the displacement, stress, electric displacement and

potential at the near field location of ðh; zÞ ¼ ðp=4; h=4Þ are shown in Figs. 11 and 12 for the set of point

loads and point charge.
Fig. 11. Generalized displacements for a two-layered piezoelectric cylinder due to a point load (( ): radial load, ( ):

circumferential load, ( ): axial load, ( ): point charge).

Fig. 12. Generalized stresses for a two-layered piezoelectric cylinder due to a point load (( ): radial load, ( ): cir-

cumferential load, ( ): axial load, ( ): point charge).
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8. Conclusions

Steady-state Green functions for a laminated piezoelectric cylinder were constructed where the cir-

cumferential behavior was represented by Fourier series and the axial dependence treated by a Fourier
transform. Their implementation is based on modal data from the spectral decomposition of the differential

operator of the governing equation. Our Green’s functions are essentially by a double summation of these

data. The convergence and precision of this double summation was discussed for the two cylinders, con-

sidering both opened–opened and shorted–shorted electric surface conditions. The study of the convergence

characteristics revealed the necessary number of elements in the radial discretization as well as the required

number of circumferential modes for an acceptable precision of the Green’s functions depicting the four

different source terms, i.e., mechanical loads and electric charge. The required number of modes in their

representations was quite nominal and was far from being exorbitantly large. Thus, Green’s functions in
these forms should be useful in other applications.
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